**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics

Abstract

When modelling the cardiovascular system, the effect of the vessel wall on the blood flow has great relevance. Arterial vessels are complex living tissues and three-dimensional specific models have been proposed to represent their behaviour. The numerical simulation of the 3D-3D Fluid-Structure Interaction (FSI) coupled problem has high computational costs in terms of required time and memory storage. Even if many possible solutions have been explored to speed up the resolution of such problem, we are far from having a 3D-3D FSI model that can be solved quickly. In 3D-3D FSI models two of the main sources of complexity are represented by the domain motion and the coupling between the fluid and the structural part. Nevertheless, in many cases, we are interested in the blood flow dynamics in compliant vessels, whereas the displacement of the domain is small and the structure dynamics is less relevant. In these situations, techniques to reduce the complexity of the problem can be used. One consists in using transpiration conditions for the fluid model as surrogate for the wall displacement, thus allowing problem's solution on a fixed domain. Another strategy consists in modelling the arterial wall as a thin membrane under specific assumptions (Figueroa et al., 2006, Nobile and Vergara, 2008) instead of using a more realistic (but more computationally intensive) 3D elastodynamic model. Using this strategy the dynamics of the vessel motion is embedded in the equation for the blood flow. Combining the transpiration conditions with the membrane model assumption, we obtain an attractive formulation, in fact, instead of solving two different models on two moving physical domains, we solve only a Navier-Stokes system in a fixed fluid domain where the structure model is integrated as a generalized Robin condition. In this paper, we present a general formulation in the boundary conditions which is independent of the time discretization scheme choice and on the stress-strain constitutive relation adopted for the vessel wall structure. Our aim is, first, to write a formulation of a reduced order model with zero order transpiration conditions for a generic time discretization scheme, then to compare a 3D-3D PSI model and a reduced FSI one in two realistic patient-specific cases: a femoropopliteal bypass and an aorta. In particular, we are interested in comparing the wall shear stresses, in fact this quantity can be used as a risk factor for some pathologies such as atherosclerosis or thrombogenesis. More in general we want to assess the accuracy and the computational convenience to use simpler formulations based on reduced order models. In particular, we show that, in the case of small displacements, using a 3D-3D PSI linear elastic model or the correspondent reduced order one yields many similar results. (c) 2013 Elsevier B.V. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (34)

Related MOOCs (31)

Related publications (216)

Fluid mechanics

Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.

Fluid dynamics

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Dirichlet boundary condition

In the mathematical study of differential equations, the Dirichlet (or first-type) boundary condition is a type of boundary condition, named after Peter Gustav Lejeune Dirichlet (1805–1859). When imposed on an ordinary or a partial differential equation, it specifies the values that a solution needs to take along the boundary of the domain. In finite element method (FEM) analysis, essential or Dirichlet boundary condition is defined by weighted-integral form of a differential equation.

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...

2023Efficient numerical simulations of coupled multi-component systems can be particularly challenging. This is mostly due to the complexity of their solutions, as mutual interactions may cause emergent behaviors, including synchronization and instabilities. V ...

Jean-François Molinari, Antonio Joaquin Garcia Suarez, Sacha Zenon Wattel, Yannick André Neypatraiky

Model-free data-driven computational mechanics (DDCM) [Kirchdoerfer & Ortiz, 2016] is a new paradigm for simulations in solid mechanics. As in the classical method, the boundary value problem is formulated with physics-based PDEs such as the balance of mom ...

2023