Direct method in the calculus of variationsIn mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy. The calculus of variations deals with functionals , where is some function space and .
Accumulation pointIn mathematics, a limit point, accumulation point, or cluster point of a set in a topological space is a point that can be "approximated" by points of in the sense that every neighbourhood of with respect to the topology on also contains a point of other than itself. A limit point of a set does not itself have to be an element of There is also a closely related concept for sequences.
Existence of GodThe existence of God (or more generally, the existence of deities) is a subject of debate in theology, philosophy of religion and popular culture. A wide variety of arguments for and against the existence of God or deities can be categorized as logical, empirical, metaphysical, subjective or scientific. In philosophical terms, the question of the existence of God or deities involves the disciplines of epistemology (the nature and scope of knowledge) and ontology (study of the nature of being or existence) and the theory of value (since some definitions of God include "perfection").
Lambda liftingLambda lifting is a meta-process that restructures a computer program so that functions are defined independently of each other in a global scope. An individual "lift" transforms a local function into a global function. It is a two step process, consisting of; Eliminating free variables in the function by adding parameters. Moving functions from a restricted scope to broader or global scope. The term "lambda lifting" was first introduced by Thomas Johnsson around 1982 and was historically considered as a mechanism for implementing functional programming languages.
Kronecker deltaIn mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: or with use of Iverson brackets: For example, because , whereas because . The Kronecker delta appears naturally in many areas of mathematics, physics, engineering and computer science, as a means of compactly expressing its definition above.
Spectral radiusIn mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·). Let λ1, ..., λn be the eigenvalues of a matrix A ∈ Cn×n. The spectral radius of A is defined as The spectral radius can be thought of as an infimum of all norms of a matrix.
Solution of Schrödinger equation for a step potentialIn quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves. The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension. Typically, the potential is modeled as a Heaviside step function. The time-independent Schrödinger equation for the wave function is where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle.
Value (ethics and social sciences)In ethics and social sciences, value denotes the degree of importance of some thing or action, with the aim of determining which actions are best to do or what way is best to live (normative ethics in ethics), or to describe the significance of different actions. Value systems are prospective and prescriptive beliefs; they affect the ethical behavior of a person or are the basis of their intentional activities. Often primary values are strong and secondary values are suitable for changes.
List of periodic functionsThis is a list of some well-known periodic functions. The constant function _ () = , where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions. All trigonometric functions listed have period , unless otherwise stated. For the following trigonometric functions: Un is the nth up/down number, Bn is the nth Bernoulli number in Jacobi elliptic functions, The following functions have period and take as their argument.
Potential theoryIn mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation—or in the vacuum, Laplace's equation.