Summary
In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation—or in the vacuum, Laplace's equation. There is considerable overlap between potential theory and the theory of Poisson's equation to the extent that it is impossible to draw a distinction between these two fields. The difference is more one of emphasis than subject matter and rests on the following distinction: potential theory focuses on the properties of the functions as opposed to the properties of the equation. For example, a result about the singularities of harmonic functions would be said to belong to potential theory whilst a result on how the solution depends on the boundary data would be said to belong to the theory of the Laplace equation. This is not a hard and fast distinction, and in practice there is considerable overlap between the two fields, with methods and results from one being used in the other. Modern potential theory is also intimately connected with probability and the theory of Markov chains. In the continuous case, this is closely related to analytic theory. In the finite state space case, this connection can be introduced by introducing an electrical network on the state space, with resistance between points inversely proportional to transition probabilities and densities proportional to potentials. Even in the finite case, the analogue I-K of the Laplacian in potential theory has its own maximum principle, uniqueness principle, balance principle, and others. A useful starting point and organizing principle in the study of harmonic functions is a consideration of the symmetries of the Laplace equation. Although it is not a symmetry in the usual sense of the term, we can start with the observation that the Laplace equation is linear.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.