Graph minorIn graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if its minors include neither the complete graph K5 nor the complete bipartite graph K3,3. The Robertson–Seymour theorem implies that an analogous forbidden minor characterization exists for every property of graphs that is preserved by deletions and edge contractions.
Cycle graphIn graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with n vertices is called C_n. The number of vertices in C_n equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. There are many synonyms for "cycle graph".
Flow networkIn graph theory, a flow network (also known as a transportation network) is a directed graph where each edge has a capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge. Often in operations research, a directed graph is called a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a source, which has only outgoing flow, or sink, which has only incoming flow.
Rainbow matchingIn the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Given an edge-colored graph G = (V,E), a rainbow matching M in G is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex, such that all the edges in the set have distinct colors. A maximum rainbow matching is a rainbow matching that contains the largest possible number of edges. Rainbow matchings are of particular interest given their connection to transversals of Latin squares.
Maximum weight matchingIn computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same.
Multipartite graphIn graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the tripartite graphs. Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite.
Complement graphIn the mathematical field of graph theory, the complement or inverse of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G. That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there. The complement is not the set complement of the graph; only the edges are complemented. Let G = (V, E) be a simple graph and let K consist of all 2-element subsets of V.
Cycle (graph theory)In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed acyclic graph. A connected graph without cycles is called a tree. A circuit is a non-empty trail in which the first and last vertices are equal (closed trail).
Path (graph theory)In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges). A directed path (sometimes called dipath) in a directed graph is a finite or infinite sequence of edges which joins a sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts.
Rooted graphIn mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots. Rooted graphs may also be known (depending on their application) as pointed graphs or flow graphs. In some of the applications of these graphs, there is an additional requirement that the whole graph be reachable from the root vertex.