Verification methodology for plasma simulations and application to a scrape-off layer turbulence code
Related publications (89)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a physics-informed neural network (PINN) as the forward model for tomographic reconstructions of biological samples. We demonstrate that by training this network with the Helmholtz equation as a physical loss, we can predict the scattered field ...
The accurate investigation of many geophysical phenomena via direct numerical simulations is computationally not possible nowadays due to the huge range of spatial and temporal scales to be resolved. Therefore advances in this field rely on the development ...
Literature on linear induction motors (LIMs) has proposed several approaches to model the behavior of such devices for different applications. In terms of accuracy and fidelity, field analysis-based models are the most relevant. Closed-form or numerical so ...
Numerical solution of the involved governing equations confirm that the commonly used two orthogonal sets of gain- and loss-probes in BOTDA, differently affect the evolution of the pump state-of- polarization, thereby potentially compromising the minimizat ...
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are ...
In this thesis we consider inverse problems involving multiscale elliptic partial differential equations. The name multiscale indicates that these models are characterized by the presence of parameters which vary on different spatial scales (macroscopic, m ...
We study the large deviations of the power injected by the active force for an active Ornstein-Uhlenbeck particle (AOUP), free or in a confining potential. For the free-particle case, we compute the rate function analytically in d-dimensions from a saddle- ...