Publication

Optical Mirror from Laser-Trapped Mesoscopic Particles

Abstract

Trapping of mesoscopic particles by optical forces usually relies on the gradient force, whereby particles are attracted into optical wells formed by landscaping the intensity of an optical field. This is most often achieved by optical Gaussian beams, interference patterns, general phase contrast methods, or other mechanisms. Hence, although the simultaneous trapping of several hundreds of particles can be achieved, these particles remain mostly independent with negligible interaction. Optical matter, however, relies on close packing and binding forces, with fundamentally different electrodynamic properties. In this Letter, we build ensembles of optically bound particles to realize a reflective surface that can be used to image an object or to focus a light beam. To our knowledge, this is the first experimental proof of the creation of a mirror by optical matter, and represents an important step toward the realization of a laser-trapped mirror (LTM) in space. From a theoretical point of view, optically bound close packing requires an exact solver of Maxwell's equations in order to precisely compute the field scattered by the collection of particles. Such rigorous calculations have been developed and are used here to study the focusing and resolving power of an LTM.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.