A 3D moving mesh Finite Element Method for two-phase flows
Related publications (69)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Solidification is a phase transformation of utmost importance in material science, for it largely controls materials' microstructure on which a wide range of mechanical properties depends. Almost every human artifact undergoes a transformation that leads t ...
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to recover ...
In this thesis, a computational approach is used to study two-phase flow including phase change by direct numerical simulation.
This approach follows the interface with an adaptive moving mesh.
The incompressible Navier-Stokes equations are solved, in tw ...
Decreasing defects, waste time, meeting customer demand and being adaptable are the goals of a Zero Defect Manufacturing (ZDM) strategy. Scheduling is an important tool to perform that. It should take in account buffer size allocation. In this study, a met ...
A moving mesh approach is employed to simulate two-phase flow with phase change. The mathematical model is based on the Arbitrary Lagrangian-Eulerian (ALE) description of the axisymmetric Navier-Stokes equations and energy conservation. These equations are ...
Contact of rough surfaces is of prime importance in the study of friction and wear. Numerical simulations are well suited for this non-linear problem, but natural surfaces being fractal [1], they have high discretization requirements. There is therefore a ...
A boundary-fitted moving mesh scheme is presented for the simulation of two-phase flow in two-dimensional and axisymmetric geometries. The incompressible Navier-Stokes equations are solved using the finite element method, and the mini element is used to sa ...
Flows of fluids with free surfaces show complex dynamical behavior. Examples include effects like capillary surface waves, topological transitions such as droplet breakup and coalescence, or pattern formation in wetting and de-wetting dynamics. These compl ...
This paper deals with a main limitation of Markovian traffic assignment (MTA) models: when the network includes cyclic structures and the link costs are small enough, the fact that the MTA models assign traffic flows to all feasible paths causes computatio ...
Because of their robustness, efficiency and non-intrusiveness, Monte Carlo methods are probably the most popular approach in uncertainty quantification to computing expected values of quantities of interest (QoIs). Multilevel Monte Carlo (MLMC) methods sig ...