A 3D moving mesh Finite Element Method for two-phase flows
Publications associées (69)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Solidification is a phase transformation of utmost importance in material science, for it largely controls materials' microstructure on which a wide range of mechanical properties depends. Almost every human artifact undergoes a transformation that leads t ...
A boundary-fitted moving mesh scheme is presented for the simulation of two-phase flow in two-dimensional and axisymmetric geometries. The incompressible Navier-Stokes equations are solved using the finite element method, and the mini element is used to sa ...
This paper deals with a main limitation of Markovian traffic assignment (MTA) models: when the network includes cyclic structures and the link costs are small enough, the fact that the MTA models assign traffic flows to all feasible paths causes computatio ...
Decreasing defects, waste time, meeting customer demand and being adaptable are the goals of a Zero Defect Manufacturing (ZDM) strategy. Scheduling is an important tool to perform that. It should take in account buffer size allocation. In this study, a met ...
Because of their robustness, efficiency and non-intrusiveness, Monte Carlo methods are probably the most popular approach in uncertainty quantification to computing expected values of quantities of interest (QoIs). Multilevel Monte Carlo (MLMC) methods sig ...
A moving mesh approach is employed to simulate two-phase flow with phase change. The mathematical model is based on the Arbitrary Lagrangian-Eulerian (ALE) description of the axisymmetric Navier-Stokes equations and energy conservation. These equations are ...
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to recover ...
In this thesis, a computational approach is used to study two-phase flow including phase change by direct numerical simulation.
This approach follows the interface with an adaptive moving mesh.
The incompressible Navier-Stokes equations are solved, in tw ...
Flows of fluids with free surfaces show complex dynamical behavior. Examples include effects like capillary surface waves, topological transitions such as droplet breakup and coalescence, or pattern formation in wetting and de-wetting dynamics. These compl ...
Contact of rough surfaces is of prime importance in the study of friction and wear. Numerical simulations are well suited for this non-linear problem, but natural surfaces being fractal [1], they have high discretization requirements. There is therefore a ...