A 3D moving mesh Finite Element Method for two-phase flows
Related publications (69)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The computation of the reachable set of states of a given dynamic system is an important step to verify its safety during operation. There are different methods of computing reachable sets, namely interval integration, capture basin, methods involving the ...
We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics insi ...
Dynamic wetting phenomena lack of a proper qualitative and quantitative characterization, especially at the micro and nanoscale. The project focuses on the design and fabrication of AFM tips capable of measuring forces and energies involved in wetting phen ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
A new numerical method is proposed to study two-phase flow and heat transfer for interlayer cooling of the new generation of multi-stacked computer chips. The fluid flow equations are developed in 3-dimensions based on the Arbitrary Lagrangian-Eulerian for ...
We present a simulation of the liquid-vapor interface of argon with explicit inclusion of the three-body interactions. The three-body contributions to the surface tension are calculated using the Kirkwood-Buff approach. Monte Carlo calculations of the long ...
The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite elemen ...
An analysis of a multiscale symmetric interior penalty discontinuous Galerkin finite element method for the numerical discretization of elliptic problems with multiple scales is proposed. This new method, first described in [A. Abdulle, C.R. Acad. Sci. Par ...
It is important to consider the microstructure of a material when studying the macroscopic mechanical properties. Although special equipments have been used for micromechanics study through experimental tests, it is limited by instruments and reproducibili ...
This paper proposes a simulation-based optimization (SO) method that enables the efficient use of complex stochastic urban traffic simulators to address various transportation problems. It presents a metamodel that integrates information from a simulator w ...