Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The mechanism of the oxygen reduction reaction (ORR) at a liquid|liquid interface, employing ferrocene (Fc) derivatives – such as decamethylferrocene (DMFc) – as a lipophilic electron donor along with sulfuric acid as an aqueous proton source, was elucidated through comparison of experimentally obtained cyclic voltammograms (CVs) to simulated CVs generated through COMSOL Multiphysics software which employs the finite element method (FEM). The simulations incorporated a potential dependent proton transfer (i.e . ion transfer, IT) step from the water (w) to organic (o) phases along with two homogeneous reactions (C1C2) occurring in the organic phase – an IT-C1C2 mechanism. The reaction of DMFc with H+(o) to form DMFc-hydride (DMFc-H+) was considered the first step (reaction 1), while reaction of DMFc-H+ with oxygen to form a peroxyl radical species, View the MathML sourceHO2, and DMFc+ was deemed the second step (reaction 2). Subsequent reactions, between View the MathML sourceHO2 and either DMFc or H+, were considered to be fast and irreversible so that 2 was a ‘proton-sink’, such that further reactions were not included; in this way, the simulation was greatly simplified. The rate of 1, kcf, and 2, kchem, were determined to be 5 × 102 and 1 × 104 L mol−1 s−1, respectively, for DMFc as the electron donor. Similarly, the rates of biphasic ORR for 1,1′-dimethylferrocene (DFc) and Fc were considered equivalent in terms of this reaction mechanism; therefore, their rates were determined to be 1 × 102 and 5 × 102 L mol−1 s−1 for 1 and 2, respectively. The reactive and diffusive layer thicknesses are also discussed.
Andrea Baccarini, Imad El Haddad, Mihnea Surdu, Lubna Dada, André Welti, Houssni Lamkaddam
, , , , ,
Jan Van Herle, Hossein Pourrahmani