Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Kinked saturated m = 1 helical structures are frequently observed in tokamak hybrid plasmas and in reversed field pinches (RFP). These modes occur when an extremum in the safety factor is close to, but necessarily resonant with, a low order rational (typically qmin ≈ 1/1 in tokamaks, and qmax ≈ 1/7 in RFPs). If the exact resonance can be avoided, the essential character of these modes can be modelled assuming ideal nested magnetic flux surfaces. The methods used to characterize these structures include linear and nonlinear ideal magnetohydrodynamic stability calculations, which evaluate the departure from an axisymmetric plasma state, or equilibrium calculations using a 3D equilibrium code. The extent to which these approaches agree in tokamaks and reverse field pinches is investigated, and compared favourably for the first time with an analytic nonlinear treatment that is valid for arbitrary toroidal mode number.
Laurent Villard, Andrei Martynov
, , ,
Olivier Sauter, Ambrogio Fasoli, Basil Duval, Stefano Coda, Jonathan Graves, Yves Martin, Duccio Testa, Patrick Blanchard, Alessandro Pau, Cristian Sommariva, Henri Weisen, Richard Pitts, Yann Camenen, Jan Horacek, Javier García Hernández, Marco Wischmeier, Nicola Vianello, Mikhail Maslov, Federico Nespoli, Yao Zhou, David Pfefferlé, Davide Galassi, Antonio José Pereira de Figueiredo, Jonathan Marc Philippe Faustin, Liang Yao, Dalziel Joseph Wilson, Hamish William Patten, Samuel Lanthaler, Xin Gao, Bernhard Sieglin, Otto Asunta