Scala (programming language)Scala (ˈskɑːlə ) is a strong statically typed high-level general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable.
Esoteric programming languageAn esoteric programming language (sometimes shortened to esolang) is a programming language designed to test the boundaries of computer programming language design, as a proof of concept, as software art, as a hacking interface to another language (particularly functional programming or procedural programming languages), or as a joke. The use of the word esoteric distinguishes them from languages that working developers use to write software.
Generalized algebraic data typeIn functional programming, a generalized algebraic data type (GADT, also first-class phantom type, guarded recursive datatype, or equality-qualified type) is a generalization of parametric algebraic data types. In a GADT, the product constructors (called data constructors in Haskell) can provide an explicit instantiation of the ADT as the type instantiation of their return value. This allows defining functions with a more advanced type behaviour.
C (programming language)C (pronounced 'siː – like the letter c) is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems.
Type inferenceType inference refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics. Types in a most general view can be associated to a designated use suggesting and restricting the activities possible for an object of that type. Many nouns in language specify such uses. For instance, the word leash indicates a different use than the word line.
Programming paradigmProgramming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms. Some paradigms are concerned mainly with implications for the execution model of the language, such as allowing side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are concerned mainly with the way that code is organized, such as grouping a code into units along with the state that is modified by the code.
Lie algebra representationIn the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
Bootstrapping (compilers)In computer science, bootstrapping is the technique for producing a self-compiling compiler – that is, a compiler (or assembler) written in the source programming language that it intends to compile. An initial core version of the compiler (the bootstrap compiler) is generated in a different language (which could be assembly language); successive expanded versions of the compiler are developed using this minimal subset of the language.
Representation theoryRepresentation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
Compiled languageA compiled language is a programming language whose implementations are typically compilers (translators that generate machine code from source code), and not interpreters (step-by-step executors of source code, where no pre-runtime translation takes place). The term is somewhat vague. In principle, any language can be implemented with a compiler or with an interpreter. A combination of both solutions is also common: a compiler can translate the source code into some intermediate form (often called p-code or bytecode), which is then passed to an interpreter which executes it.