In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
The notion is closely related to that of a representation of a Lie group. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the universal cover of a Lie group are the integrated form of the representations of its Lie algebra.
In the study of representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The universality of this ring says that the of representations of a Lie algebra is the same as the category of modules over its enveloping algebra.
Let be a Lie algebra and let be a vector space. We let denote the space of endomorphisms of , that is, the space of all linear maps of to itself. We make into a Lie algebra with bracket given by the commutator: for all ρ,σ in . Then a representation of on is a Lie algebra homomorphism
Explicitly, this means that should be a linear map and it should satisfy
for all X, Y in . The vector space V, together with the representation ρ, is called a -module. (Many authors abuse terminology and refer to V itself as the representation).
The representation is said to be faithful if it is injective.
One can equivalently define a -module as a vector space V together with a bilinear map such that
for all X,Y in and v in V. This is related to the previous definition by setting X ⋅ v = ρ(X)(v).
Adjoint representation of a Lie algebra
The most basic example of a Lie algebra representation is the adjoint representation of a Lie algebra on itself:
Indeed, by virtue of the Jacobi identity, is a Lie algebra homomorphism.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators.
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...
Let G be a simple linear algebraic group defined over an algebraically closed field of characteristic p ≥ 0 and let φ be a nontrivial p-restricted irreducible representation of G. Let T be a maximal torus of G and s ∈ T . We say that s is Ad-regular if α(s ...
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...