Higher category theoryIn mathematics, higher category theory is the part of at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic invariants of spaces, such as their fundamental . An ordinary has and morphisms, which are called 1-morphisms in the context of higher category theory.
Strict 2-categoryIn , a strict 2-category is a with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category over Cat (the , with the structure given by ). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.
Monoidal categoryIn mathematics, a monoidal category (or tensor category) is a equipped with a bifunctor that is associative up to a natural isomorphism, and an I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant s commute. The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples.
Vector spaceIn mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.
Category theoryCategory theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, numerous constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories.
Normed vector spaceIn mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms: Non-negativity: for every ,. Positive definiteness: for every , if and only if is the zero vector.
∞-groupoidIn , a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard ). It is an generalization of a groupoid, a category in which every morphism is an isomorphism. The homotopy hypothesis states that ∞-groupoids are equivalent to spaces up to homotopy. Alexander Grothendieck suggested in Pursuing Stacks that there should be an extraordinarily simple model of ∞-groupoids using globular sets, originally called hemispherical complexes.
Simplicial setIn mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and . Formally, a simplicial set may be defined as a contravariant functor from the to the . Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization.
Topological vector spaceIn mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness.
Coprime integersIn number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also a is prime to b or a is coprime with b. The numbers 8 and 9 are coprime, despite the fact that neither considered individually is a prime number, since 1 is their only common divisor.