**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Topological vector space

Summary

In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis.
A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.
Many topological vector spaces are spaces of functions, or linear operators acting on topological vector spaces, and the topology is often defined so as to capture a particular notion of convergence of sequences of functions.
In this article, the scalar field of a topological vector space will be assumed to be either the complex numbers or the real numbers unless clearly stated otherwise.
Every normed vector space has a natural topological structure: the norm induces a metric and the metric induces a topology.
This is a topological vector space because:
The vector addition map defined by is (jointly) continuous with respect to this topology. This follows directly from the triangle inequality obeyed by the norm.
The scalar multiplication map defined by where is the underlying scalar field of is (jointly) continuous. This follows from the triangle inequality and homogeneity of the norm.
Thus all Banach spaces and Hilbert spaces are examples of topological vector spaces.
There are topological vector spaces whose topology is not induced by a norm, but are still of interest in analysis.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading

Related publications (6)

Related people

Related units

Related concepts (198)

Related MOOCs (9)

No results

Related courses (75)

No results

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Loading

Loading

Loading

Related lectures (853)

In mathematics, a real function of real numbers is said to be uniformly continuous if there is a positive real number such that function values over any function domain interval of the size are as close to each other as we want. In other words, for a uniformly continuous real function of real numbers, if we want function value differences to be less than any positive real number , then there is a positive real number such that at any and in any function interval of the size .

In the mathematical field of topology, a uniform space is a topological space with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis. In addition to the usual properties of a topological structure, in a uniform space one formalizes the notions of relative closeness and closeness of points.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

MATH-404: Functional analysis II

We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In a second part of the course we discuss differential calculus in Banach

MATH-220: Metric and topological spaces

In metric spaces a distance is defined between each pair of points. In topological spaces, distances are replaced by only a certain notion of nearness. This abstract setting sheds new light upon basic

Open Mapping Theorem

Explains the Open Mapping Theorem for holomorphic maps between Riemann surfaces.

Properties of Weak Derivatives

Explores weak derivatives in Sobolev spaces, discussing their properties and uniqueness.

Group Morphisms: G-equivariant, Chapter III

Discusses the formulation of G-morphisms within vector spaces and topological spaces.

Every principal G-bundle over X is classified up to equivalence by a homotopy class X -> BG, where BG is the classifying space of G. On the other hand, for every nice topological space X Milnor constr

We study a fixed point property for linear actions of discrete groups on weakly complete convex proper cones in locally convex topological vector spaces. We search to understand the class of discrete

We derive a covariance formula for the class of 'topological events' of smooth Gaussian fields on manifolds; these are events that depend only on the topology of the level sets of the field, for examp