Publication

Variational Justification of Cycle Spinning for Wavelet-Based Solutions of Inverse Problems

Abstract

Cycle spinning is a widely used approach for improving the performance of wavelet-based methods that solve linear inverse problems. Extensive numerical experiments have shown that it significantly improves the quality of the recovered signal without increasing the computational cost. In this letter, we provide the first theoretical convergence result for cycle spinning for solving general linear inverse problems. We prove that the sequence of reconstructed signals is guaranteed to converge to the minimizer of some global cost function that incorporates all wavelet shifts.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.