**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# On sums of graph eigenvalues

Abstract

We use two variational techniques to prove upper bounds for sums of the lowest several eigenvalues of matrices associated with finite, simple, combinatorial graphs. These include estimates for the adjacency matrix of a graph and for both the standard combinatorial Laplacian and the renormalized Laplacian. We also provide upper bounds for sums of squares of eigenvalues of these three matrices. Among our results, we generalize an inequality of Fiedler for the extreme eigenvalues of the graph Laplacian to a bound on the sums of the smallest (or largest) k such eigenvalues, k < n. Furthermore, if lambda(j) are the eigenvalues of the graph Laplacian H = -Delta, in increasing order, on a finite graph with vertical bar nu vertical bar vertices and vertical bar epsilon vertical bar edges which is isomorphic to a subgraph of the v-dimensional infinite cubic lattice, then the spectral sums obey a Weyl-type upper bound, a simplification of which reads Sigma(k-1)(j=1) lambda(j)

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (15)

Related publications

Eigenvalues and eigenvectors

In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is

Rights

Rights are legal, social, or ethical principles of freedom or entitlement; that is, rights are the fundamental normative rules about what is allowed of people or owed to people according to some legal

Laplace operator

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols

No results