Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic inte ...
Any living organism contains a whole set of instructions encoded as genes on the DNA. This set of instructions contains all the necessary information that the organism will ever need, from its development to a mature individual to environment specific resp ...
Mammalian transcription factors (TFs) differ broadly in their nuclear mobility and sequence-specific/non-specific DNA binding affinity. How these properties affect the ability of TFs to occupy their specific binding sites in the genome and modify the epige ...
In mammals the circadian clock drives daily behavioural and physiological changes that resonate with environmental cues, which can be observed, for example, in the intricate timing of rest during the night and activity during the day in humans. The circadi ...
Precise spatiotemporal regulation of gene expression is essential for development and homeostasis of complex organisms. This is achieved in large part by sequence-specific transcription factors (TF) that bind to genomic regulatory elements to activate or r ...
Transcription factors (TFs) bind to specific DNA motifs to regulate the expression of target genes. To reach their binding sites, TFs diffuse in 3D and perform local motions such as 1D sliding, hopping, or intersegmental transfer. TF-DNA interactions depen ...
Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome occupancy fol ...
Binding of mammalian transcription factors (TFs) to regulatory regions is hindered by chromatin compaction and DNA methylation of their binding sites. Nevertheless, pioneer transcription factors (PFs), a distinct class of TFs, have the ability to access nu ...
Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. ...
TRIM28 (also known as KAP1 or TIF1β) is the universal co-repressor of the Krüppel-associated box-containing zinc finger proteins (Krab-ZFPs), the largest family of transcription factors in mammals. During early embryogenesis, TRIM28 mediates the transcript ...