Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
ParabolaIn mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the directrix. The parabola is the locus of points in that plane that are equidistant from the directrix and the focus.
Dot productIn mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more).
Cross productIn mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming.
Risch algorithmIn symbolic computation, the Risch algorithm is a method of indefinite integration used in some computer algebra systems to find antiderivatives. It is named after the American mathematician Robert Henry Risch, a specialist in computer algebra who developed it in 1968. The algorithm transforms the problem of integration into a problem in algebra. It is based on the form of the function being integrated and on methods for integrating rational functions, radicals, logarithms, and exponential functions.
Hermitian adjointIn mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint (or adjoint) operator on that space according to the rule where is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by A† in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics.
Triple productIn geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product. The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two.
Power iterationIn mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix , the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, . The algorithm is also known as the Von Mises iteration. Power iteration is a very simple algorithm, but it may converge slowly.
Rayleigh quotientIn mathematics, the Rayleigh quotient (ˈreɪ.li) for a given complex Hermitian matrix and nonzero vector is defined as:For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose . Note that for any non-zero scalar . Recall that a Hermitian (or real symmetric) matrix is diagonalizable with only real eigenvalues. It can be shown that, for a given matrix, the Rayleigh quotient reaches its minimum value (the smallest eigenvalue of ) when is (the corresponding eigenvector).