An indefinite variant of LOBPCG for definite matrix pencils
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present outlier-free isogeometric Galerkin discretizations of eigenvalue problems related to the biharmonic and the polyharmonic operator in the univariate setting. These are Galerkin discretizations in certain spline subspaces that provide accurate app ...
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) ...
Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect of open-loop control on the linear stability properties of unstable flows. Sensitivity maps identify regions where small-amplitude control is the most effective, i. ...
The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are ...
We present asymptotically sharp inequalities, containing a 2nd term, for the Dirichlet and Neumann eigenvalues of the Laplacian on a domain, which are complementary to the familiar Berezin-Li-Yau and Kroger inequalities in the limit as the eigenvalues tend ...
In this thesis we address the computation of a spectral decomposition for symmetric
banded matrices. In light of dealing with large-scale matrices, where classical dense
linear algebra routines are not applicable, it is essential to design alternative tech ...
The Dirichlet-Neumann (DN) method has been extensively studied for linear partial differential equations, while little attention has been devoted to the nonlinear case. In this paper, we analyze the DN method both as a nonlinear iterative method and as a p ...
We determine the asymptotic behavior of eigenvalues of clamped plates under large compression by relating this problem to eigenvalues of the Laplacian with Robin boundary conditions. Using the method of fundamental solutions, we then carry out a numerical ...
This paper is concerned with the asymptotic optimality of spectral coarse spaces for two-level iterative methods. Spectral coarse spaces, namely coarse spaces obtained as the span of the slowest modes of the used one-level smoother, are known to be very ef ...
Block Krylov subspace methods (KSMs) comprise building blocks in many state-of-the-art solvers for large-scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov ...