Publication

Stable Quasi-Solid-State Dye-Sensitized Solar Cells Using Novel Low Molecular Mass Organogelators and Room-Temperature Molten Salts

Abstract

Stable quasi-solid-state dye-sensitized solar cells (DSCs) were fabricated by using room-temperature molten salts (1-methyl-3-hexyl-imidazolium iodide), and a series of diamine derivatives with different lengths of alkyl chain as low molecular mass organogelators (LMOGs). The number of methylene (-CH2-) units between the two amide carbonyl groups in the gelator molecule has significant influence on the charge transport property of gel electrolyte, and the kinetic processes of the electron transport and recombination. Less compact networks of the ionic liquid gel electrolytes containing odd-numbered -CH2- gelator facilitate the diffusion of I-3(-) and I-. Also, the odd-numbered -CH2- gelators-based DSCs exhibit longer electron recombination lifetime and a higher open circuit potential (V-oc) compared with the DSCs based on even-numbered -CH2- gelators; consequently, the photovoltaic performances of DSCs based on odd-numbered -CH2- gelators are much better than those even-numbered -CH2- gelators. Remarkably, the results of the accelerated aging tests showed that the ionic liquid gel electrolyte-based DSCs could retain 93%-99% of their initial photoelectric conversion efficiencies (eta) under heat at 60 degrees C, and 100% of their initial photoelectric conversion efficiencies under one sun light soaking with UV cutoff filter at 50 degrees C for 1000 h. This excellent long-term stability of quasi-solid-state DSCs is very important for application and commercialization of DSCs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Dye-sensitized solar cell
A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991.
Ionic liquid
An ionic liquid (IL) is a salt in the liquid state. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as . While ordinary liquids such as water and gasoline are predominantly made of electrically neutral molecules, ionic liquids are largely made of ions. These substances are variously called liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glasses. Ionic liquids have many potential applications.
Carbonyl group
In organic chemistry, a carbonyl group is a functional group with the formula , composed of a carbon atom double-bonded to an oxygen atom, and it is divalent at the C atom. It is common to several classes of organic compounds (such as aldehydes, ketones and carboxylic acids), as part of many larger functional groups. A compound containing a carbonyl group is often referred to as a carbonyl compound. The term carbonyl can also refer to carbon monoxide as a ligand in an inorganic or organometallic complex (a metal carbonyl, e.
Show more
Related publications (33)

A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte

Michael Graetzel, Shaik Mohammed Zakeeruddin, Ulf Anders Hagfeldt, Peng Wang, Yiming Cao, Yameng Ren, Dan Zhang

Semitransparent dye-sensitized solar cells (DSCs) are appealing as aesthetically pleasing and colorful see-through photovoltaics. Green semitransparent DSCs have been presented, but the best ones rely on green zinc porphyrin photosensitizers and high volat ...
WILEY-V C H VERLAG GMBH2020

First Report of Chenodeoxycholic Acid-Substituted Dyes Improving the Dye Monolayer Quality in Dye-Sensitized Solar Cells

Ulf Anders Hagfeldt

Chenodeoxycholic acid (CDCA) is the most used antiaggregation additive in dye-sensitized solar cells since its introduction to the field in 1993. However, effective suppression of dye aggregation comes at the cost of reduced dye loading, a lower open-circu ...
WILEY-V C H VERLAG GMBH2020

Electron-Selective Layers for Dye-Sensitized Solar Cells Based on TiO2 and SnO2

Michael Graetzel, Shaik Mohammed Zakeeruddin, Ladislav Kavan

Titanium dioxide (anatase, rutile) and quasi-amorphous tin dioxide are prepared on F-doped SnO2 in the form of dense thin films, which can serve as electron-selective layers in perovskite solar cells and dye-sensitized solar cells (DSSCs). The present stud ...
2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.