Publication

Rotational propulsion enabled by inertia

Lailai Zhu
2014
Journal paper
Abstract

The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.