Publication

Estimation of phase derivatives using discrete energy separation algorithm in digital holographic interferometry

Abstract

This Letter proposes a new method for the estimation of the first-and second-order phase derivatives corresponding to strain and curvature from a single fringe pattern in digital holographic interferometry. The method is based on a discrete energy separation algorithm, which provides a biased phase derivative estimate in a noisy environment. Subsequently, the least-squares spline approximation with optimal number of knots selection technique is used to obtain the accurate estimation of phase derivatives. The accuracy and computational efficiency of the proposed method is validated with simulation and experimental results. (C) 2014 Optical Society of America

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.