Nonstationarity in Intermittent Rainfall: The “Dry Drift"
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Rain gauges provide valuable information about the amount and frequency of rainfall. In Australia, the majority of rain gauges are located in populated, wet coastal regions. Approximately 2000 gauges reporting within 24 h of a target day were used to make ...
A method for the stochastic simulation of (rain)drop size distributions (DSDs) in space and time using geostatistics is presented. At each pixel, the raindrop size distribution is described by a Gamma distribution with two or three stochastic parameters. T ...
The drop size distribution (DSD) describes the microstructure of liquid precipitation. The high variability of the DSD reflects the variety of microphysical processes controlling raindrop properties and affects the retrieval of rainfall. An analysis of the ...
Double-moment normalization of the drop size distribution (DSD) summarizes the DSD in a compact way, using two of its statistical moments and a "generic'' double-moment normalized DSD function. Results are presented of an investigation into the invariance ...
A stochastic rainfall simulator based on the concept of “dry drift” is proposed. It is characterized by a new and nonstationary representation of rainfall in which the average rain rate (in log-space) depends on the distance to the closest surrounding dry ...
The measurement of rainfall and its prediction at short lead times (often referred to as nowcasting) have important implications in hydrometeorology, and improving their accuracy may have an impact on various human activities. Indeed, the importance of now ...
Measurement of rain is made difficult by the high variability of the precipitation process, down to raindrop scale. Point measurements are generally accurate, but their lack of spatial representativeness is a significant limitation. Weather radars indirect ...
Accurate and reliable rain rate estimates are important for various hydrometeorological applications. Consequently, rain sensors of different types have been deployed in many regions. In this work, measurements from different instruments, namely, rain gaug ...
Rain gauges and weather radars do not measure rainfall at the same scale; roughly 20 cm for the former and 1 km for the latter. This significant scale gap is not taken into account by standard comparison tools (e.g. cumulative depth curves, normalized bias ...
The raindrop size distribution (DSD) quantifies the microstructure of rainfall and is critical to studying precipitation processes. We present a method to improve the accuracy of DSD measurements from Parsivel (particle size and velocity) disdrometers, usi ...