Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Core formation is the main differentiation event in the history of a planet. However, the chemical composition of planetary cores and the physicochemical conditions prevailing during core formation remain poorly understood. The asteroid 4-Vesta is the smallest extant planetary body known to have differentiated a metallic core. Howardite, Eucrite, Diogenite (HED) meteorites, which are thought to sample 4-Vesta, provide us with an opportunity to study core formation in planetary embryos.Partitioning of elements between the core and mantle of a planet fractionates their isotopes according to formation conditions. One such element, silicon, shows large isotopic fractionation between metal and silicate, and its partitioning into a metallic core is only possible under very distinctive conditions of pressure, oxygen fugacity and temperature. Therefore, the silicon isotope system is a powerful tracer with which to study core formation in planetary bodies. Here we show through high-precision measurement of Si stable isotopes that HED meteorites are significantly enriched in the heavier isotopes compared to chondrites. This is consistent with the core of 4-Vesta containing at least 1. wt% of Si, which in turn suggests that 4-Vesta's differentiation occurred under more reducing conditions (δIW -4) than those previously suggested from analysis of the distribution of moderately siderophile elements in HEDs. © 2013 Elsevier B.V.
Marinella Mazzanti, Rizlan Bernier-Latmani, Margaux Camille Andréa Molinas, Radmila Faizova, Ashley Richards Brown
,