Eigenfunction expansions of ultradifferentiable functions and ultradistributions
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The purpose of this research project is to develop variational integrators synchronous or asynchronous, which can be used as tools to study complex structures composed of plates and beams subjected to large deformations and stress. We consider the geometri ...
A finitely generated subgroup F of a real Lie group G is said to be Diophantine if there is beta > 0 such that non-trivial elements in the word ball B-Gamma(n) centered at 1 is an element of F never approach the identity of G closer than broken vertical ba ...
The set of solutions of a parameter-dependent linear partial differential equation with smooth coefficients typically forms a compact manifold in a Hilbert space. In this paper we review the generalized reduced basis method as a fast computational tool for ...
We investigate higher-order geometric k-splines for template matching on Lie groups. This is motivated by the need to apply diffeomorphic template matching to a series of images, e.g., in longitudinal studies of Computational Anatomy. Our approach formulat ...
Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as ...
In this paper we show that the incompressible Euler equation on the Sobolev space H-s(R-n), s> n/2+1, can be expressed in Lagrangian coordinates as a geodesic equation on an infinite dimensional manifold. Moreover the Christoffel map describing the geodesi ...
Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute approximations to Riemannian cubic splines in a Riemannian manifold M. Calculating bi-Jacobi fields is straightforward when M is a symmetric space such as bi-invariant SO(3 ...
Multisymplectic variational integrators are structure-preserving numerical schemes especially designed for PDEs derived from covariant spacetime Hamilton principles. The goal of this paper is to study the properties of the temporal and spatial discrete evo ...
The purpose of this thesis is to develop variational integrators synchronous or asynchronous, which can be used as tools to study complex structures composed of plates and beams subjected to large deformations and stress. We consider the geometrically exac ...