Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: A common way of expressing this property is to say that the field has no sources or sinks. The divergence theorem gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero: where is the outward normal to each surface element.
In physics and mathematics, in the area of vector calculus, Helmholtz's theorem, also known as the fundamental theorem of vector calculus, states that any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field; this is known as the Helmholtz decomposition or Helmholtz representation. It is named after Hermann von Helmholtz.
In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED. The other most important divergence is relative entropy (also called Kullback–Leibler divergence), which is central to information theory.
We study two encodings of the asynchronous pi-calculus with input-guarded choice into its choice-free fragment. One encoding is divergence-free, but refines the atomic commitment of choice into gradual commitment. The other preserves atomicity, but introdu ...
The aim of this short note is twofold. First, we give a sketch of the proof of a recent result proved by the authors in the paper [7] concerning existence and uniqueness of renormalized solutions of continuity equations with unbounded damping coefficient. ...
In this paper we propose a new technique to obtain upper and lower bounds on the energy norm of the error in the velocity field, for the Stokes problem. It relies on a splitting of the velocity error in two contributions: a projection error, that quantifie ...