A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Large scale 3D atomistic simulations are performed to study the interaction between a curved dislocation with a dominant screw character and a Coherent Twin Boundary (CTB). Three FCC metals (Al, Cu and Ni) are addressed using 6 embedded-atom method (EAM) p ...
Plastic deformation in elemental BCC metals and dilute alloys is controlled by the slower of the kink pair nucleation and kink migration processes along screw dislocations. In alloys nucleation is facilitated and migration inhibited, leading to a concentra ...
Modeling dislocation multiplication due to interaction and reactions on a mesoscopic scale is an important task for the physically meaningful description of stage II hardening in face centered cubic crystalline materials. In recent Discrete Dislocation Dyn ...
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
Dislocation multiplication in plasticity research is often connected to the picture of a Frank-Read source. Although it is known that this picture is not applicable after easy glide deformation, plasticity theories often assume Frank-Read-type models for d ...
The mechanical strength of metals depends on their resistance against various microscopic
deformation processes. In ductile metals, the most important process is shearing of the crystal
lattice by dislocations. One of the fundamental aspects of dislocation ...
The detrimental effects of the H on the mechanical properties of the metals are known for more than a century. One of the most important degradation mechanisms is H embrittlement (HE). In this thesis, we examined a few famous proposed mechanisms in the fie ...
The reduced activation tempered martensitic steel Eurofer97 is a reference steel for a structural applica-tions in fusion reactors. The first-wall and blanket materials will be subjected to high thermal and neutron fluxes and will experience very complex, ...
Nanocrystalline (NC) metals have attracted widespread interest in materials science due to their high strength compared to coarse-grained counterparts. It is well know that during uniaxial deformation, the stress-strain behaviour exhibits an extraordinary ...
Capturing plasticity at realistic dislocation densities with high configurational complexity requires a continuum-leveldiscrete dislocation dynamics (DDD) description. However, many features controlling dislocation motion areinherently atomistic, such as t ...