Aluminum-silicon interfaces and nanocomposites: A molecular dynamics study
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Impurities are known to have a significant impact on materials properties. In particular, the presence of impurities can change mechanical properties and stabilize the microstructure by reducing grain growth and recrystallization processes. In the past ato ...
Coupled grain boundary motion was simulated in a three-dimensional nanocrystalline Al grain boundary network using molecular dynamics. It is shown that, in spite of the triple junction constraints, a symmetrical Sigma 75 tilt boundary can migrate during th ...
Microstructural control is a key aspect in producing ceramics with tailored properties and is often achieved by using dopants in a rather empirical fashion. Atomic scale simulations could provide much needed insight but the long-standing challenge of linki ...
Carbon matrix carbon nanotube (CNT) composites have a broad range of applications because of the exceptional mechanical properties of both matrix and fibers. Since interfacial sliding plays a key role in determining the strength and toughness of ceramic co ...
Grain boundary engineering (GBE) aims at optimizing the properties of face centred cubic materials with low stacking fault energy by creating a high content of special twin boundaries. Quantifying twinning and its parameters, such as the twin related domai ...
Open-pore replicated microcellular 99.99% pure aluminium is tested in tensile creep, varying the temperature from 150 to 450 degrees C, the applied stress from 0.15 to 0.5 MPa, and the relative density from 0.14 to 0.28. Tensile creep curves are of classic ...
Polycrystalline materials with crystallite diameters below hundred nanometer exhibit extraordinary strength which goes along with a decrease in ductility. In order to tailor tough materials, which combine strength and ductility, the underlying deformation ...
We present molecular dynamics (MD) simulations of the shear-coupled migration (SCM) behaviour of symmetrical tilt boundaries perturbed by the presence of nano-cracks or nano-precipitates lying on the boundary plane. The simulations have been performed for ...
The paper presents the microstructure and mechanical properties of an oxide dispersion strengthened (ODS), reduced activation, ferritic steel, namely the Fe-14Cr-2W-0.3Ti-0.3Y(2)O(3) alloy, which was fabricated by hot isostatic pressing followed by high sp ...
This work addresses the behaviour of replicated microcellular pure aluminium under multiaxial stress states and in the presence of stress and strain localization sites. Processing of the foam was conducted in-house, using the replication process. The main ...