Inverse limitIn mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any although their existence depends on the category that is considered. They are a special case of the concept of in category theory. By working in the , that is by reverting the arrows, an inverse limit becomes a direct limit or inductive limit, and a limit becomes a colimit.
Isomorphism of categoriesIn , two categories C and D are isomorphic if there exist functors F : C → D and G : D → C which are mutually inverse to each other, i.e. FG = 1D (the identity functor on D) and GF = 1C. This means that both the s and the morphisms of C and D stand in a one-to-one correspondence to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms.
Character theoryIn mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves.
Inverse elementIn mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x. (An identity element is an element such that x * e = x and e * y = y for all x and y for which the left-hand sides are defined.
Galilean transformationIn physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group (assumed throughout below). Without the translations in space and time the group is the homogeneous Galilean group.
Equivalence of categoriesIn , a branch of abstract mathematics, an equivalence of categories is a relation between two that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned.
External auditorAn external auditor performs an audit, in accordance with specific laws or rules, of the financial statements of a company, government entity, other legal entity, or organization, and is independent of the entity being audited. Users of these entities' financial information, such as investors, government agencies, and the general public, rely on the external auditor to present an unbiased and independent audit report. The manner of appointment, the qualifications, and the format of reporting by an external auditor are defined by statute, which varies according to jurisdiction.
Magma (algebra)In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed. The term groupoid was introduced in 1927 by Heinrich Brandt describing his Brandt groupoid (translated from the German Gruppoid). The term was then appropriated by B. A. Hausmann and Øystein Ore (1937) in the sense (of a set with a binary operation) used in this article.
Game complexityCombinatorial game theory measures game complexity in several ways: State-space complexity (the number of legal game positions from the initial position), Game tree size (total number of possible games), Decision complexity (number of leaf nodes in the smallest decision tree for initial position), Game-tree complexity (number of leaf nodes in the smallest full-width decision tree for initial position), Computational complexity (asymptotic difficulty of a game as it grows arbitrarily large).
Lagrange's four-square theoremLagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares. That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows: This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.