Concept

Isomorphism of categories

In , two categories C and D are isomorphic if there exist functors F : C → D and G : D → C which are mutually inverse to each other, i.e. FG = 1D (the identity functor on D) and GF = 1C. This means that both the s and the morphisms of C and D stand in a one-to-one correspondence to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms. Isomorphism of categories is a very strong condition and rarely satisfied in practice. Much more important is the notion of equivalence of categories; roughly speaking, for an equivalence of categories we don't require that be equal to , but only naturally isomorphic to , and likewise that be naturally isomorphic to . As is true for any notion of isomorphism, we have the following general properties formally similar to an equivalence relation: any category C is isomorphic to itself if C is isomorphic to D, then D is isomorphic to C if C is isomorphic to D and D is isomorphic to E, then C is isomorphic to E. A functor F : C → D yields an isomorphism of categories if and only if it is bijective on objects and on morphism sets. This criterion can be convenient as it avoids the need to construct the inverse functor G. Consider a finite group G, a field k and the group algebra kG. The category of k-linear group representations of G is isomorphic to the category of left modules over kG. The isomorphism can be described as follows: given a group representation ρ : G → GL(V), where V is a vector space over k, GL(V) is the group of its k-linear automorphisms, and ρ is a group homomorphism, we turn V into a left kG module by defining for every v in V and every element Σ ag g in kG. Conversely, given a left kG module M, then M is a k vector space, and multiplication with an element g of G yields a k-linear automorphism of M (since g is invertible in kG), which describes a group homomorphism G → GL(M).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
Related lectures (13)
Cohomology Operations: Cup Products and Bockstein
Explores cup products, Bockstein homomorphisms, and Steenrod algebra in cohomology.
Introduction to Category Theory: Natural Transformations
Introduces natural transformations in category theory through concrete examples from group theory.
Symmetry and Group Theory: Exercise Set 4
Explores symmetry operations, isomorphic representations, and three-dimensional group representations.
Show more
Related publications (6)

Modal engineering of electromagnetic circuits to achieve rapid settling times

Matthias Imboden

Inductive circuits and devices are ubiquitous and important design elements in many applications, such as magnetic drives, galvanometers, magnetic scanners, applying direct current (DC) magnetic fields to systems, radio frequency coils in nuclear magnetic ...
AIP Publishing2023

Relative Projectivity and Relative Endotrivial Modules

Caroline Lassueur

This dissertation is concerned with modular representation theory of finite groups, and more precisely, with the study of classes of representations, which we shall term relative endotrivial modules. Given a prime number p, a finite group G of order divisi ...
EPFL2012

Categorical Foundations for K-theory

Nicolas Mathieu Michel

K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other fields of mathematics, like spaces and (not necessarily c ...
EPFL2010
Show more
Related concepts (6)
Category of rings
In mathematics, the category of rings, denoted by Ring, is the whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings is , meaning that the class of all rings is proper. The category Ring is a meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure.
Groupoid
In mathematics, especially in and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: Group with a partial function replacing the binary operation; in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called inverse by analogy with group theory. A groupoid where there is only one object is a usual group.
Equivalence of categories
In , a branch of abstract mathematics, an equivalence of categories is a relation between two that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.