SemanticsSemantics () is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science. In English, the study of meaning in language has been known by many names that involve the Ancient Greek word σῆμα (sema, "sign, mark, token"). In 1690, a Greek rendering of the term semiotics, the interpretation of signs and symbols, finds an early allusion in John Locke's An Essay Concerning Human Understanding: The third Branch may be called σημειωτική [simeiotikí, "semiotics"], or the Doctrine of Signs, the most usual whereof being words, it is aptly enough termed also λογικὴ, Logick.
Denotational semanticsIn computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called denotations) that describe the meanings of expressions from the languages. Other approaches providing formal semantics of programming languages include axiomatic semantics and operational semantics. Broadly speaking, denotational semantics is concerned with finding mathematical objects called domains that represent what programs do.
Game semanticsGame semantics (dialogische Logik, translated as dialogical logic) is an approach to formal semantics that grounds the concepts of truth or validity on game-theoretic concepts, such as the existence of a winning strategy for a player, somewhat resembling Socratic dialogues or medieval theory of Obligationes. In the late 1950s Paul Lorenzen was the first to introduce a game semantics for logic, and it was further developed by Kuno Lorenz.
Operational semanticsOperational semantics is a category of formal programming language semantics in which certain desired properties of a program, such as correctness, safety or security, are verified by constructing proofs from logical statements about its execution and procedures, rather than by attaching mathematical meanings to its terms (denotational semantics).
Semantics (computer science)In programming language theory, semantics is the rigorous mathematical study of the meaning of programming languages. Semantics assigns computational meaning to valid strings in a programming language syntax. It is closely related to, and often crosses over with, the semantics of mathematical proofs. Semantics describes the processes a computer follows when executing a program in that specific language. This can be shown by describing the relationship between the input and output of a program, or an explanation of how the program will be executed on a certain platform, hence creating a model of computation.
Programming languageA programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning), which are usually defined by a formal language. Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant implementation that is treated as a reference.
Algebraic semantics (computer science)In computer science, algebraic semantics is a form of axiomatic semantics based on algebraic laws for describing and reasoning about program specifications in a formal manner. The syntax of an algebraic specification is formulated in two steps: (1) defining a formal signature of data types and operation symbols, and (2) interpreting the signature through sets and functions. The signature of an algebraic specification defines its formal syntax. The word "signature" is used like the concept of "key signature" in musical notation.
Principle of compositionalityIn semantics, mathematical logic and related disciplines, the principle of compositionality is the principle that the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them. The principle is also called Frege's principle, because Gottlob Frege is widely credited for the first modern formulation of it. However, the principle has never been explicitly stated by Frege, and arguably it was already assumed by George Boole decades before Frege's work.
Formal semantics (natural language)Formal semantics is the study of grammatical meaning in natural languages using formal tools from logic, mathematics and theoretical computer science. It is an interdisciplinary field, sometimes regarded as a subfield of both linguistics and philosophy of language. It provides accounts of what linguistic expressions mean and how their meanings are composed from the meanings of their parts. The enterprise of formal semantics can be thought of as that of reverse-engineering the semantic components of natural languages' grammars.
Lambda calculusLambda calculus (also written as λ-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing lambda terms and performing reduction operations on them.