Publication

Asymmetry in Size-Segregation Rates.

Abstract

We show experimentally and by comparison with theory that during particle size-segregation in a sheared granular flow large particles rise slower in regions of many small particles and small particles sink faster in regions of many large particles. Binary mixtures with increasing amount of small particles take longer to fully segregate and vice versa. In addition, the saturation of the bottom of the flow with small particles is faster than saturation of large particles at the top of the flow. Our results, therefore, show that the segregation rates of the large and small particles have an asymmetric dependency on the local particle concentration. This has important repercussions for the modeling of size segregation which has up till now not taken into account this effect and considered symmetric dependency of segregation rates on concentration. This discovery draws parallels between the dynamics of size segregation and the processes of traffic flow, sedimentation and particle diffusion, which also exhibit asymmetric behavior.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.