In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles, twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons, neutrons or muons, which contain two or more elementary particles, are known as composite particles. Ordinary matter is composed of atoms, themselves once thought to be indivisible elementary particles. The name atom comes from the Ancient Greek word ἄτομος (atomos) which means indivisible or uncuttable. Despite the theories about atoms that had existed for thousands of years the factual existence of atoms remained controversial until 1905. In that year Albert Einstein published his paper on Brownian motion, putting to rest theories that had regarded molecules as mathematical illusions and asserted that matter was ultimately composed of various concentrations of energy. Subatomic constituents of the atom were first identified toward the end of the 20th century, beginning with the electron, followed by the proton in 1919, the photon in the 1920s, and the neutron in 1932. By that time the advent of quantum mechanics had radically altered the definition of a "particle" by putting forward an understanding in which they carried out a simultaneous existence as matter waves. Many theoretical elaborations upon, and beyond, the Standard Model have been made since its codification in the 1970s. These include notions of supersymmetry, which double the number of elementary particles by hypothesizing that each known particle associates with a "shadow" partner far more massive. However, like an additional elementary boson mediating gravitation, such superpartners remain undiscovered as of .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (32)
PHYS-319: Physics lab IIIa
Ce cours permet d'observer de nombreux phénomènes physiques et leur applications technologiques. Il permet ainsi d'acquérir des connaissances sur les méthodes d'observation, de mesure et d'analyse des
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Show more
Related concepts (30)
Particle physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos.
Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks.
Photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458m/s (or about ). The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles.
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.