Compact High-Performance Continuous-Wave Double-Resonance Rubidium Standard With 1.4 x 10(-13) tau(-1/2) Stability
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents a new fabrication method to manufacture alkali reference cells having dimensions larger than standard micromachined cells and smaller than glass-blown ones, for use in compact atomic devices such as vapour-cell atomic clocks or magnetom ...
The increasing demand for highly precise, yet compact and low power timing devices pushes the research in the field of chip scale atomic clocks (CSACs). At the heart of a CSAC, there is a vapor cell containing a few micrograms of alkali metal, such as rubi ...
We report our studies on the new designed magnetron-type microwave cavity operating in the TE011-like mode, at the rubidium hyperfine ground-state frequency of about 6.835 GHz. The properties of the cavity resonance were studied as a function of cavity tem ...
We consider the Cauchy problem for an energy supercritical nonlinear wave equation that arises in -dimensional Yang-Mills theory. A certain self-similar solution of this model is conjectured to act as an attractor for generic large data evolutions. Assumin ...
Similarly to mechanical structures, stable flows can exhibit resonance when perturbed by an impulsive or harmonic forcing. Swirling wakes and sloshing waves belong to this kind of flows and manifest large energy response when excited close to their natural ...
In vapor cell atomic clocks the atom-field interaction is typically obtained inside a microwave cavity resonator in which the microwave driving field together with a static magnetic field and an optical field are applied to excite the atoms. These fields a ...
Nowadays mobile and battery-powered applications push the need for radically miniaturized and low-power frequency standards that surpass the stability achievable with quartz oscillators. For the miniaturization of double-resonance rubidium (Rb-87) atomic c ...
Institute of Electrical and Electronics Engineers2014
Nowadays there is an increasing need for radically miniaturized and low-power atomic frequency standards, for use in mobile and battery-powered applications. For the miniaturization of double-resonance (DR) Rubidium (Rb-87) atomic clocks, the size reductio ...
This thesis aimed at developing innovative packaging solutions for a miniature atomic clock and other microsystems in the cm-scale, i.e. somewhat larger than what is practical for full "chip-scale" device-package integration using clean-room technologies f ...
The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE011-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell ...