Publication

The Microloop-Gap Resonator: A Novel Miniaturized Microwave Cavity for Double-Resonance Rubidium Atomic Clocks

Abstract

Nowadays mobile and battery-powered applications push the need for radically miniaturized and low-power frequency standards that surpass the stability achievable with quartz oscillators. For the miniaturization of double-resonance rubidium (Rb-87) atomic clocks, the size reduction of the microwave cavity or resonator (MWR) to well below the wavelength of the atomic transition (6.835 GHz for Rb-87) is of high interest. Here, we present a novel miniaturized MWR, the mu-LGR, for use in a miniature DR atomic clock and designed to apply a well-defined microwave field to a microfabricated Rb cell that provides the reference signal for the clock. This mu-LGR consists of a loop-gap resonator-based cavity with very compact dimensions (

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.