Data PreprocessingData preprocessing can refer to manipulation or dropping of data before it is used in order to ensure or enhance performance, and is an important step in the data mining process. The phrase "garbage in, garbage out" is particularly applicable to data mining and machine learning projects. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values, amongst other issues. Analyzing data that has not been carefully screened for such problems can produce misleading results.
Time seriesIn mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart).
OrthogonalityIn mathematics, orthogonality is the generalization of the geometric notion of perpendicularity. Orthogonality is also used with various meanings that are often weakly related or not related at all with the mathematical meanings. The word comes from the Ancient Greek ὀρθός (), meaning "upright", and γωνία (), meaning "angle". The Ancient Greek ὀρθογώνιον () and Classical Latin orthogonium originally denoted a rectangle. Later, they came to mean a right triangle.
Genetic associationGenetic association is when one or more genotypes within a population co-occur with a phenotypic trait more often than would be expected by chance occurrence. Studies of genetic association aim to test whether single-locus alleles or genotype frequencies or more generally, multilocus haplotype frequencies differ between two groups of individuals usually diseased subjects and healthy controls). Genetic association studies are based on the principle that genotypes can be compared "directly", i.e.
Data processingData processing is the collection and manipulation of digital data to produce meaningful information. Data processing is a form of information processing, which is the modification (processing) of information in any manner detectable by an observer. The term "Data Processing", or "DP" has also been used to refer to a department within an organization responsible for the operation of data processing programs. Data processing may involve various processes, including: Validation – Ensuring that supplied data is correct and relevant.
Machine learningMachine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
Spectral radiusIn mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·). Let λ1, ..., λn be the eigenvalues of a matrix A ∈ Cn×n. The spectral radius of A is defined as The spectral radius can be thought of as an infimum of all norms of a matrix.
No instruction set computingNo instruction set computing (NISC) is a computing architecture and compiler technology for designing highly efficient custom processors and hardware accelerators by allowing a compiler to have low-level control of hardware resources. NISC is a statically scheduled horizontal nanocoded architecture (SSHNA). The term "statically scheduled" means that the operation scheduling and Hazard handling are done by a compiler. The term "horizontal nanocoded" means that NISC does not have any predefined instruction set or microcode.
Perturbation theoryIn mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. In perturbation theory, the solution is expressed as a power series in a small parameter . The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of usually become smaller.
Big dataBig data primarily refers to data sets that are too large or complex to be dealt with by traditional data-processing application software. Data with many entries (rows) offer greater statistical power, while data with higher complexity (more attributes or columns) may lead to a higher false discovery rate. Though used sometimes loosely partly because of a lack of formal definition, the interpretation that seems to best describe big data is the one associated with a large body of information that we could not comprehend when used only in smaller amounts.