Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The world has faced many natural and man-made disasters in the past few years, resulting in millions of people living in temporary camps across the globe. The energy and clean water needs of the relief operators in such emergency situations are primarily satisfied by diesel engine based generators and importing clean water to the site, in certain cases even for several years after the emergency. This approach results in problems such as low security of supply and high costs. Especially targeting the prolonged displacement situations, this paper presents an alternative solution – the Energy and Water Emergency Module. The proposed solution aims towards reducing the dependency on fossil fuel in prolonged emergency situations to a minimum while including local energy sources in the energy supply in a flexible and reliable way. The proposed module is built in a standard 20 ft container, and encompasses hybrid generation from solar, wind and biomass, with the possibility of using fossil sources too thanks to a dual fuel gas engine. The module can work both in grid connected and stand-alone mode. In addition the module includes a water purification unit to meet the water needs of displaced population. A demonstration unit was assembled at the Royal Institute of Technology in Stockholm during the year 2012 as a ‘concept proof’, and is now being tested and optimized for future deployment on the field. Preliminary testing and modelling shows that the proposed solution can reliably support emergency situations, and is already cost competitive with the current water and energy supply solutions for emergency situations.
Marc Vielle, Sigit Pria Perdana
, , ,
, , ,