Urban planningUrban planning, also known as town planning, city planning, regional planning, or rural planning, is a technical and political process that is focused on the development and design of land use and the built environment, including air, water, and the infrastructure passing into and out of urban areas, such as transportation, communications, and distribution networks and their accessibility.
Order topologyIn mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If X is a totally ordered set, the order topology on X is generated by the subbase of "open rays" for all a, b in X. Provided X has at least two elements, this is equivalent to saying that the open intervals together with the above rays form a base for the order topology.
Urban areaAn urban area, built-up area or urban agglomeration is a human settlement with a high population-density and an infrastructure of built environment. This is the core of a metropolitan statistical area in the United States, if it contains a population of more than 50,000. Urban areas originate through urbanization, and researchers categorize them as cities, towns, conurbations or suburbs. In urbanism, the term "urban area" contrasts to rural areas such as villages and hamlets; in urban sociology or urban anthropology it contrasts with natural environment.
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Binary-code compatibilityBinary-code compatibility (binary compatible or object-code-compatible) is a property of a computer system, meaning that it can run the same executable code, typically machine code for a general-purpose computer CPU, that another computer system can run. Source-code compatibility, on the other hand, means that recompilation or interpretation is necessary before the program can be run on the compatible system.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Category of modulesIn algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that).
Source-code compatibilitySource-code compatibility (source-compatible) means that a program can run on computers (or operating systems), independently of binary-code compatibility and that the source code is needed for portability. The source code must be compiled before running, unless the computer used has an interpreter for the language at hand. The term is also used for assembly language compatibility, where the source is a human-readable form of machine code that must be converted into numerical (i.e. executable) machine code by an assembler.
Word orderIn linguistics, word order (also known as linear order) is the order of the syntactic constituents of a language. Word order typology studies it from a cross-linguistic perspective, and examines how different languages employ different orders. Correlations between orders found in different syntactic sub-domains are also of interest. The primary word orders that are of interest are the constituent order of a clause, namely the relative order of subject, object, and verb; the order of modifiers (adjectives, numerals, demonstratives, possessives, and adjuncts) in a noun phrase; the order of adverbials.
Urban renewalUrban renewal (also called urban regeneration in the United Kingdom and urban redevelopment in the United States) is a program of land redevelopment often used to address urban decay in cities. Urban renewal involves the clearing out of blighted areas in inner cities to clear out slums and create opportunities for higher class housing, businesses, and other developments. A primary purpose of urban renewal is to restore economic viability to a given area by attracting external private and public investment and by encouraging business start-ups and survival.