In algebra, given a ring R, the category of left modules over R is the whose are all left modules over R and whose morphisms are all module homomorphisms between left R-modules. For example, when R is the ring of integers Z, it is the same thing as the . The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring R but that category is equivalent to the category of left (or right) modules over the enveloping algebra of R (or over the opposite of that). Note: Some authors use the term for the category of modules. This term can be ambiguous since it could also refer to a category with a . The categories of left and right modules are . These categories have enough projectives and enough injectives. Mitchell's embedding theorem states every abelian category arises as a of the category of modules of some ring. Projective limits and inductive limits exist in the categories of left and right modules. Over a commutative ring, together with the tensor product of modules ⊗, the category of modules is a . A monoid object of the category of modules over a commutative ring R is exactly an associative algebra over R. See also: compact object (a compact object in the R-mod is exactly a finitely presented module). FinVect The K-Vect (some authors use VectK) has all vector spaces over a field K as objects, and K-linear maps as morphisms. Since vector spaces over K (as a field) are the same thing as modules over the ring K, K-Vect is a special case of R-Mod (some authors use ModR), the category of left R-modules. Much of linear algebra concerns the description of K-Vect. For example, the dimension theorem for vector spaces says that the isomorphism classes in K-Vect correspond exactly to the cardinal numbers, and that K-Vect is equivalent to the of K-Vect which has as its objects the vector spaces Kn, where n is any cardinal number. The category of sheaves of modules over a ringed space also has enough injectives (though not always enough projectives).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.