Enhanced electrical model of Lithium-based batteries accounting the charge redistribution effect
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Electric vehicles (EV) as an alternative to fossil fuel based cars play an important role for a more sustainable development of the transport sector. Traction batteries such as Lithium-ion Batteries (LIB) represent the vital part of this technology and cou ...
This paper focuses on the prediction of temperature profiles on the surface of lithium-ion cells using a non-parametric method. In particular, this paper proposes the adoption of the impulse response technique to compute and interpret cell surface temperat ...
LiBH4 has been discussed as a promising hydrogen storage material and as a solid-state electrolyte in lithiumion batteries. It contains 18.5 wt% hydrogen and undergoes a structural phase transition at 381K which is associated with a large increase in rotat ...
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect ...
We discuss the challenges of building a simulation framework for hybrid systems, in particular the well-known Zeno effect and correct composition of models idealised by abstracting irrelevant behavioural details (e.g. the bounce dynamics of a bouncing ball ...
This paper focuses on the prediction of temperature profiles on the surface of Lithium-ion cells. In particular, the paper proposes the adoption of the impulse response technique to predict cell surface temperatures consequent to generic discharge conditio ...
Replacing the liq. electrolyte in lithium batteries by a solid has been a long-standing goal of the battery industry due to the promise of better safety and the potential to produce batteries with higher energy densities. Recently, sym. polystyrene-block-p ...
Background: LiCoO2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 degrees C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of L ...
Physics-based models of electrochemical cells are of great interest for the future battery management systems (BMSs), due to their accuracy and capability to predict cell physical states. One of their main disadvantages, when compared to equivalent circuit ...
Due to their high theoretical capacity compared to that of state-of-the-art graphite-based electrodes, silicon electrodes have gained much research focus for use in the development of next generation lithium-ion batteries. However, a major drawback of sili ...