Manufacturing 100-mu m-thick silicon solar cells with efficiencies greater than 20% in a pilot production line
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Solar cells rely on the efficient generation of electrons and holes and the subsequent collection of these photoexcited charge carriers at spatially separated electrodes. High wafer quality is now commonplace for crystalline silicon (c-Si) based solar cell ...
WILEY2022
, ,
Crystalline silicon (c-Si) photovoltaics has long been considered energy intensive and costly. Over the past decades, spectacular improvements along the manufacturing chain have made c-Si a low-cost source of electricity that can no longer be ignored. Over ...
In an ideal world, sufficiency, efficiency, and clean energy would be balanced, with an emphasis on sufficiency in the critical decade ahead of us. Given this importance, how could we get closer to this ideal world, and improve the general acceptance of su ...
Thanks to the continuous improvement of crystalline silicon (c-Si) solar cells, largely dominating the market, photovoltaic electricity is nowadays the cheapest source of energy on the market. Yet, solar energy is far from being completely harvested, as t ...
The developed world is built on the fact that energy is readily available and functionally infinite. The electricity from the wall, the gas at the station, and the heat in our homes are reliable and low-cost. But this comfort is so far only possible throug ...
To overcome the worldwide challenges of climate change, photovoltaics is foreseen to play a significant role in the world electricity production. Nowadays, single junction crystalline silicon (c-Si) based solar cells hold the largest share of the global ph ...
The global photovoltaic market is mostly dominated by solar cells based on crystalline silicon (c-Si), which are covering 95% of the market. This thesis concerns silicon heterojunction (SHJ), a high-efficiency technology with a 2% market share in 2018, but ...
Crystalline Silicon (c-Si) solar cells are dominating the photovoltaic (PV) market. Owing to their large manufacturing capacity, reliability and efficiency, c-Si solar cells are now cost-competitive with other non-renewable electricity sources in many plac ...
Photovoltaic (PV) technology offers an economic and sustainable solution to the challenge of increasing energy demand in times of global warming. The world PV market is currently dominated by the homo-junction crystalline silicon (c-Si) PV technology based ...
The recombination of photogenerated charge carriers at metal-semiconductor interfaces remains a major source of efficiency loss in photovoltaic cells. Here, we present SiNx and AlOx nanolayers as promising interface dielectrics to enable high efficiency ho ...