Publication

Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser

Christoph Peter Hauri
2014
Journal paper
Abstract

We report on high-field terahertz transients with 0.9-mJ pulse energy produced in a 400 mm(2) partitioned organic crystal by optical rectification of a 30-mJ laser pulse centered at 1.25 mu m wavelength. The phase-locked single-cycle terahertz pulses cover the hard-to-access low-frequency range between 0.1 and 5 THz and carry peak fields of more than 42 MV/cm and 14 Tesla with the potential to reach over 80 MV/cm by choosing appropriate focusing optics. The scheme based on a Cr:Mg2SiO4 laser offers a high conversion efficiency of 3% using uncooled organic crystal. The collimated pump laser configuration provides excellent terahertz focusing conditions. (C) 2014 Optical Society of America

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
National Ignition Facility
The National Ignition Facility (NIF) is a laser-based inertial confinement fusion (ICF) research device, located at Lawrence Livermore National Laboratory in Livermore, California, United States. NIF's mission is to achieve fusion ignition with high energy gain. It achieved the first instance of scientific breakeven controlled fusion in an experiment on December 5, 2022, with an energy gain factor of 1.5. It supports nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear explosions.
Focus (optics)
In geometrical optics, a focus, also called an image point, is a point where light rays originating from a point on the object converge. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by aberrations of the imaging optics. In the absence of significant aberrations, the smallest possible blur circle is the Airy disc, which is caused by diffraction from the optical system's aperture.
Vergence (optics)
In optics, vergence is the angle formed by rays of light that are not perfectly parallel to one another. Rays that move closer to the optical axis as they propagate are said to be converging, while rays that move away from the axis are diverging. These imaginary rays are always perpendicular to the wavefront of the light, thus the vergence of the light is directly related to the radii of curvature of the wavefronts. A convex lens or concave mirror will cause parallel rays to focus, converging toward a point.
Show more
Related publications (34)

The competing effects of wave amplitude and collisions on multi-ion species suppression of stimulated Brillouin scattering in inertial confinement fusion Hohlraums

Stephan Brunner

Reduction in stimulated Brillouin scattering (SBS) from National Ignition Facility Hohlraums has been predicted through the use of multi-ion species materials on Hohlraum walls. This approach to controlling SBS is based upon introducing a lighter ion speci ...
AIP Publishing2023

Generation and control of localized terahertz fields in photoemitted electron plasmas

Fabrizio Carbone, Giovanni Maria Vanacore, Ivan Madan, Ido Kaminer, Simone Gargiulo, Francesco Barantani

Dense micron-sized electron plasmas, such as those generated upon irradiation of nanostructured metallic surfaces by intense femtosecond laser pulses, constitute a rich playground to study light-matter interactions, many-body phenomena, and out-of-equilibr ...
ROYAL SOC CHEMISTRY2023

Highly efficient THz four-wave mixing in doped silicon

Gabriel Aeppli

Third-order non-linearities are important because they allow control over light pulses in ubiquitous high-quality centro-symmetric materials like silicon and silica. Degenerate four-wave mixing provides a direct measure of the third-order non-linear sheet ...
SPRINGERNATURE2021
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.