An electric clock is a clock that is powered by electricity, as opposed to a mechanical clock which is powered by a hanging weight or a mainspring. The term is often applied to the electrically powered mechanical clocks that were used before quartz clocks were introduced in the 1980s. The first experimental electric clocks were constructed around the 1840s, but they were not widely manufactured until mains electric power became available in the 1890s. In the 1930s, the synchronous electric clock replaced mechanical clocks as the most widely used type of clock.
Electric clocks can operate by several different types of mechanism:
Electromechanical clocks have a traditional mechanical movement, which keeps time with an oscillating pendulum or balance wheel powered through a gear train by a mainspring, but use electricity to rewind the mainspring with an electric motor or electromagnet. This mechanism is found mostly in antique clocks.
Electric remontoire clocks have gear trains turned by a small spring or weighted lever, called a remontoire, which was wound up more frequently by an electric motor or electromagnet. This mechanism was more accurate than a mainspring, because the frequent winding averaged out variations in the clock's rate caused by the varying force of the spring as it unwound. It was used in precision pendulum clocks, and in automotive clocks until the 1970s.
Electromagnetic clocks keep time with a pendulum or balance wheel, but the pulses to keep it going are not provided by a mechanical movement and escapement linkage, but by magnetic force from an electromagnet (solenoid). This was the mechanism used in the first electric clocks, and is found in antique electric pendulum clocks. It is also found in a few modern decorative mantel and desk clocks.
Synchronous clocks rely on the 50 or 60 Hz utility frequency of the AC electric power grid as a timing source, by driving the clock gears with a synchronous motor. They essentially count cycles of the power supply.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at least an order of magnitude more accurate than mechanical clocks. Generally, some form of digital logic counts the cycles of this signal and provides a numerical time display, usually in units of hours, minutes, and seconds.
A clock or chronometer is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units such as the day, the lunar month, and the year. Devices operating on several physical processes have been used over the millennia. Some predecessors to the modern clock may be considered "clocks" that are based on movement in nature: A sundial shows the time by displaying the position of a shadow on a flat surface.
Comprendre le fonctionnement des enseignes et des afficheurs à LED, depuis les petites enseignes à motifs fixes jusqu'aux écrans géants à LED. Apprendre à les fabriquer et à les programmer les microc
Ce cours donne les bases théoriques et pratiques nécessaires à une bonne compréhension et utilisation des microcontrôleurs. De nombreux exemples seront abordés. Des exercices seront proposés, compatib
Since the invention of the pendulum clock by Christiaan Huygens in 1657, precision timekeepers have been regulated by oscillators. Although the pendulum is not an isochronous oscillator, its introduction as a time basis for clock regulation led to a signif ...
A central task in high-level synthesis is scheduling: the allocation of operations to clock cycles. The classic approach to scheduling is static, in which each operation is mapped to a clock cycle at compile-time, but recent years have seen the emergence o ...
Shape Memory Alloy (SMA) based actuators have been commonly used in applications that require being compact and lightweight. In this paper, the inherent stiffness of a flexure-based linear guide is used to create a bias-spring SMA actuator which further re ...