Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In tetrapods, limb and axial movements are coordinated during locomotion. It is well established that inter- and intralimb coordination show considerable variations during ongoing locomotion. Much less is known about the flexibility of the axial musculoskeletal system during locomotion and the neural mechanisms involved. Here we examined this issue in the salamander Pleurodeles waltlii, which is capable of locomotion in both aquatic and terrestrial environments. Kinematics of the trunk and electromyograms from the mid-trunk epaxial myotomes were recorded during four locomotor behaviors in freely moving animals. A similar approach was used during rhythmic struggling movements since this would give some insight into the flexibility of the axial motor system. Our results show that each of the forms of locomotion and the struggling behavior is characterized by a distinct combination of mid-trunk motor patterns and cycle durations. Using in vitro electrophysiological recordings in isolated spinal cords, we observed that the spinal networks activated with bath-applied N-methyl-d-aspartate could generate these axial motor patterns. In these isolated spinal cord preparations, the limb motor nerve activities were coordinated with each mid-trunk motor pattern. Furthermore, isolated mid-trunk spinal cords and hemicords could generate the mid-trunk motor patterns. This indicates that each side of the cord comprises a network able to generate coordinated axial motor activity. The roles of descending and sensory inputs in the behavior-related changes in axial motor coordination are discussed.
, ,