Publication

Determination of the thermal conductivity in zirconia based inert matrix nuclear fuel by oscillating differential scanning calorimetry and laser flash

Manuel Alexandre Pouchon
1998
Journal paper
Abstract

The performances of oscillating differential scanning calorimetry (ODSC) and laser-flash technique in determining the thermal conductivity and the specific heat of zirconia-based materials, analogous to a potential nuclear fuel, were compared. The tested materials were (Zr1−x−y−z,Yx,Ery,Mez)O2−(x+y)/2, with Me=Ce or Th. The measured specific heats were around 0.4 J K−1 g−1 and the thermal conductivities ranged from 2 to 3 W K−1 m−1. The ODSC measurements resulted in cp values. The thermal conductivity was derived from two complementary measurements, one with a thin and the other with a thick sample. The laser-flash technique directly delivered the thermal diffusivity of the sample; consequently, the specific heat capacity cp has to be known for determining the thermal conductivity. The ODSC measurements were affected by the position of the sample on the support. This, consequently, influenced the reproducibility of the measurements. The reproducibility of the scans by laser flash was excellent. Thermal conductivity decreased with increase in the stabilizer (Y, Er) concentration. This trend was justified on the basis of a model including concentration and size of the oxygen vacancies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.