Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K).
Heat capacity is an extensive property. The corresponding intensive property is the specific heat capacity, found by dividing the heat capacity of an object by its mass. Dividing the heat capacity by the amount of substance in moles yields its molar heat capacity. The volumetric heat capacity measures the heat capacity per volume. In architecture and civil engineering, the heat capacity of a building is often referred to as its thermal mass.
The heat capacity of an object, denoted by , is the limit
where is the amount of heat that must be added to the object (of mass M) in order to raise its temperature by .
The value of this parameter usually varies considerably depending on the starting temperature of the object and the pressure applied to it. In particular, it typically varies dramatically with phase transitions such as melting or vaporization (see enthalpy of fusion and enthalpy of vaporization). Therefore, it should be considered a function of those two variables.
The variation can be ignored in contexts when working with objects in narrow ranges of temperature and pressure. For example, the heat capacity of a block of iron weighing one pound is about 204 J/K when measured from a starting temperature T = 25 °C and P = 1 atm of pressure. That approximate value is adequate for temperatures between 15 °C and 35 °C, and surrounding pressures from 0 to 10 atmospheres, because the exact value varies very little in those ranges. One can trust that the same heat input of 204 J will raise the temperature of the block from 15 °C to 16 °C, or from 34 °C to 35 °C, with negligible error.
At constant pressure, heat supplied to the system contributes to both the work done and the change in internal energy, according to the first law of thermodynamics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is aimed at giving a general understanding and building a feeling of what electronic states inside a crystal are.
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. It is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order to cause an increase of one unit in its temperature. The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K−1⋅m−3. The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K−1⋅kg−1) times the density of the substance (in kg/L, or g/mL).
In building design, thermal mass is a property of the mass of a building that enables it to store heat and provide inertia against temperature fluctuations. It is sometimes known as the thermal flywheel effect. The thermal mass of heavy structural elements can be designed to work alongside a construction's lighter thermal resistance components to create energy efficient buildings.
La transition énergique suisse / Energiewende in der Schweiz
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Explores energy exchange in chemical reactions and the first law of thermodynamics.
The thesis explores the issue of fairness in the real-time (RT) control of battery energy storage systems (BESSs) hosted in active distribution networks (ADNs) in the presence of uncertainties by proposing and experimentally validating appropriate control ...
EPFL2024
,
CsSnI3 is a promising ecofriendly solution for energy harvesting technologies. It exists at room temperature in either a black perovskite polymorph or a yellow 1D double-chain, which irreversibly deteriorates in the air. In this work, we unveil the relativ ...
The efficient utilization of resources in accelerated materials science necessitates flexible, reconfigurable software-defined research workflows. We demonstrate a brokering approach to modular and asynchronous research orchestration to integrate multiple ...