Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.
Bart Deplancke, Julie Marie Russeil, Sonia Karaz, Maria Deak, Umji Lee, Benjamin D. Cosgrove
Johan Auwerx, Umberto De Marchi
Bart Deplancke, Julie Marie Russeil, Daniel Alpern