Publication

Distributed Graph-based Convoy Control for Networked Intelligent Vehicles

Abstract

This paper presents an approach for formation control of multi-lane vehicular convoys in highways. We extend a Laplacian graph-based, distributed control law such that networked intelligent vehicles can join or leave the formation dynamically without jeopardizing the ensemble’s stability. Additionally, we integrate two essential control behaviors for lane-keeping and obstacle avoidance into the controller. To increase the performance of the convoy controller in terms of formation maintenance and fuel economy, the parameters of the controller are optimized in realistic scenarios using Particle Swarm Optimization (PSO), a powerful metaheuristic optimization method well-suited for large parameter spaces. The performances of the optimized controllers are evaluated in high-fidelity multi-vehicle simulations outlining the efficiency and robustness of the proposed strategy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.