Determination of the critical resolved shear stress and the friction stress in austenitic stainless steels by compression of pillars extracted from single grains
Related publications (48)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Cu-Be alloys provide excellent electrical and mechanical properties, but present serious health hazards during manufacturing. Among alternative alloys, the Cu-Ti system has the highest yield strength; however, Ti cannot be easily solutionized at concentrat ...
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
Fatigue damage in materials results in localized strain at the microstructural level. In many engineering components of the cooling circuits of nuclear power plants, where austenitic steels are used, the material experiences multiaxial cyclic loading, eith ...
The aim of this project is to understand the correlation between alloy composition and the build-up of internal stresses in 18 carat Au-Ag-Cu alloys under thermo-mechanical loads. The copper rich end of this ternary system exhibits order-hardening of the e ...
EPFL2020
The detrimental effects of the H on the mechanical properties of the metals are known for more than a century. One of the most important degradation mechanisms is H embrittlement (HE). In this thesis, we examined a few famous proposed mechanisms in the fie ...
During the last decades, as usages of Nano- and Micro-Electro-Mechanical Systems (MEMS and NEMS) increase significantly, it becomes necessary to understand performances (e.g. strength and ductility) of small-scaled materials. In such small scales, dislocat ...
This study presents a thermomechanical processing concept which is capable of exploiting the full industrial application potential of recently introduced AlMgZn(Cu) alloys. The beneficial linkage of alloy design and processing allows not only to satisfy th ...
The mechanical strength of metals depends on their resistance against various microscopic
deformation processes. In ductile metals, the most important process is shearing of the crystal
lattice by dislocations. One of the fundamental aspects of dislocation ...
The 2xxx series aluminium alloys, which contain Cu as the main addition element, are widely used in the aerospace industry for their high specific strength. The main strengthening contribution in these alloys comes from the formation of theta' precipitates ...
Strengthening by needle-shaped precipitates is critical in Al–Mg–Si alloys. Here, the strengthening is studied computationally at the peak-aged condition where precipitate shearing and Orowan looping are usually considered to have equal strengths. Pseudo-r ...